Catalysis by Adsorbed Sulphur Dioxide of the *cis-trans*-Isomerization of But-2-enes at Room Temperature

By KIYOSHI OTSUKA* and AKIRA MORIKAWA

(Department of Chemical Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan)

Summary Sulphur dioxide condensed on various adsorbents catalyses the *cis-trans*-isomerization of but-2-enes without enhancement of the rate of double bond migration.

NaX ZEOLITE, Na-mordenite, KL zeolite, porous Vycor glass (Corning 7930), and Silica gel-60 (Merck) with SO_2 condensed at 24.5 °C catalyse the *cis-trans*-isomerization of but-2-enes at the same temperature, without inducing the formation of any but-1-ene. Without SO_2 , these adsorbents do not catalyse either reaction. NaY zeolite, Al_2O_3 ,

HY zeolite (47% Na exchanged from NaY), and silica gel-No. 12. (Davison) catalysed both reactions appreciably at 24.5 °C in the absence of SO₂. Addition of SO₂ to these four adsorbents greatly enhanced the rate of *cis-trans*isomerization, but reduced the rate of double bond migration. The initial rates of both reactions with and without SO₂ are in the Table. On all the adsorbents examined, SO₂ catalyses *cis-trans*-isomerization and poisons double bond migration to but-1-ene.

Geometrical isomerization of *cis*- and *trans*-but-2-ene accompanying polysulphone formation in liquid SO_2 has been reported.^{1,2} In the present work, no polymerization

J.C.S. CHEM. COMM., 1975

TABLE.	Initial rate	es of <i>cis</i> -	<i>trans</i> -ison	nerization,	Rc-t,	and	double
bond	migration,	$R_{\rm DBM}$, or	n various	adsorbent	s at	24.5	°C.

		$R_{c-t} \times (mol mi)$ Without	10 ⁶ / n ⁻¹ g ⁻¹) With	$R_{ t DBM} imes 10^6/ \ ({ m mol min^{-1} g^{-1}}) \ { m Without} \ { m With}$		
Adsorbent ^a		SO ₂ b	SO₂⁰	SO ₂ b	SO3c	
NaX zeolite Porous Vycor		d	4 ·21	d	d	
glass		d	0.91	d	d	
SiÕ ₂ -60		d	2.57	d	d	
Na-mordenite		d	0.43	d	d	
KL zeolite		0.02	10.2	0.04	0.04	
NaY zeolite		0.34	41.5	4.91	0.08	
HY zeolite	••	7.23	31.9	3.72	2.89	
γ -Al ₂ O ₃	••	9.40	23.7	3.46	d	
SiO_2 -No. 12	••	3.14	11.1	2.44	1.08	

^a 0·2-0·5 g; pretreated with oxygen and evacuated, at 500 °C. ▶ Initiated with 9.0×10^{-4} mol of pure *cis*-but-2-ene in a circulating system of 225 ml dead volume. ${}^{\circ}$ SO₄ (5·4 × 10⁻⁴ mol) was added initially, and the reaction was started by introducing 9.0×10^{-4} mol of *cis*-but-2-ene. The coverage of condensed SO₂ was in the range 0.02 (SiO₃-60) to 0.4 (NaX). ^d Rate $< 0.01 \times 10^{-6} \text{ mol min}^{-1} \text{ g}^{-1}$.

¹ G. M. Bristow and F. S. Dainton, *Nature*, 1953, 172, 804.
 ² G. M. Bristow and F. S. Dainton, *Proc. Roy. Soc.*, 1955, *A*, 229, 525.
 ³ D. Booth, F. S. Dainton, and K. J. Ivin, *Trans. Faraday Soc.*, 1959, 55, 1293.

was observed on NaY, NaX, and porous Vycor glass during the isomerization at 24.5 and 0 °C, confirmed by the absence of a pressure drop in the reactants. This may suggest that the isomerization on the solid surface does not correlate with polysulphone formation, or that the ceiling temperature^{1,2} of the polymerization lies far below that determined in liquid SO₂.

Above the ceiling temperature for polymerization in liquid SO₂, no isomerization takes place in the absence of illumination or of an initiator such as benzoyl peroxide.1 It is surprising that condensed SO₂ induces cis-transisomerization even on catalytically inactive adsorbents such as silica gel, NaX, or porous Vycor glass, at room temperature. This implies that the formation of a molecular complex³ between the physically adsorbed SO₂ and but-2-ene might play a significant role in the reaction.

(Received, 23rd December 1974; Com. 1554.)